拓扑排序

拓扑排序

拓扑排序要解决的问题是给一个有向无环图的所有节点排序。


适用条件

每个顶点出现且只出现一次。

若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。

有向无环图(DAG)才能有拓扑排序,非DAG没有拓扑排序。

这里的条件通俗一点讲,就是假设每个节点都是一个事件,事件与事件之间存在先后关系,比如吃饭之前需要做饭,但如果这些事件里面有个环,便不能构成先后顺序了,所以拓扑排序只适用于DAG


实现思路

  1. 在有向图中选一个没有前驱的顶点并且输出
  2. 从图中删除该顶点和所有以它为尾的弧(白话就是:删除所有和它有关的边)
  3. 重复上述两步,直至所有顶点输出,或者当前图中不存在无前驱的顶点为止,后者代表我们的有向图是有环的,因此,也可以通过拓扑排序来判断一个图是否有环。

假设我们有这样一个DAG

image-20231101110813756

我们得选择一个没有前驱的节点,这里有1和6,我们先选择1。这里我们输出1,并且删除跟1有关的边

image-20231101111109486

这里我们发现4也是没有前驱的节点,可以输出4,并且删除4有关的边

image-20231101111246549

然后选择6节点,输出6节点并且删除6有关的边

image-20231101111330104

然后选择节点5

image-20231101111355394

最后输出2和3

所以我们拓扑排序的结果就是:1->4->6->5->2->3


代码实现

Kahn算法

Kahn的算法的思路其实就是我们之前那个手动展示的拓扑排序的实现,我们先使用一个栈保存入度为0 的顶点,然后输出栈顶元素并且将和栈顶元素有关的边删除,减少和栈顶元素有关的顶点的入度数量并且把入度减少到0的顶点也入栈。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
bool Graph_DG::topological_sort() {
cout << "图的拓扑序列为:" << endl;
//栈s用于保存栈为空的顶点下标
stack<int> s;
int i;
ArcNode * temp;
//计算每个顶点的入度,保存在indgree数组中
for (i = 0; i != this->vexnum; i++) {
temp = this->arc[i].firstarc;
while (temp) {
++this->indegree[temp->adjvex];
temp = temp->next;
}

}

//把入度为0的顶点入栈
for (i = 0; i != this->vexnum; i++) {
if (!indegree[i]) {
s.push(i);
}
}
//count用于计算输出的顶点个数
int count=0;
while (!s.empty()) {//如果栈为空,则结束循环
i = s.top();
s.pop();//保存栈顶元素,并且栈顶元素出栈
cout << this->arc[i].data<<" ";//输出拓扑序列
temp = this->arc[i].firstarc;
while (temp) {
if (!(--this->indegree[temp->adjvex])) {//如果入度减少到为0,则入栈
s.push(temp->adjvex);
}
temp = temp->next;
}
++count;
}
if (count == this->vexnum) {
cout << endl;
return true;
}
cout << "此图有环,无拓扑序列" << endl;
return false;//说明这个图有环
}

DFS算法

它每次都沿着一条路径一直往下搜索,知道某个顶点没有了出度时,就停止递归,往回走,所以我们就用DFS的这个思路,我们可以得到一个有向无环图的拓扑序列,其实DFS很像Kahn算法的逆过程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
bool Graph_DG::topological_sort_by_dfs() {
stack<string> result;
int i;
bool * visit = new bool[this->vexnum];
//初始化我们的visit数组
memset(visit, 0, this->vexnum);
cout << "基于DFS的拓扑排序为:" << endl;
//开始执行DFS算法
for (i = 0; i < this->vexnum; i++) {
if (!visit[i]) {
dfs(i, visit, result);
}
}
//输出拓扑序列,因为我们每次都是找到了出度为0的顶点加入栈中,
//所以输出时其实就要逆序输出,这样就是每次都是输出入度为0的顶点
for (i = 0; i < this->vexnum; i++) {
cout << result.top() << " ";
result.pop();
}
cout << endl;
return true;
}
void Graph_DG::dfs(int n, bool * & visit, stack<string> & result) {

visit[n] = true;
ArcNode * temp = this->arc[n].firstarc;
while (temp) {
if (!visit[temp->adjvex]) {
dfs(temp->adjvex, visit,result);
}
temp = temp->next;
}
//由于加入顶点到集合中的时机是在dfs方法即将退出之时,
//而dfs方法本身是个递归方法,
//仅仅要当前顶点还存在边指向其他不论什么顶点,
//它就会递归调用dfs方法,而不会退出。
//因此,退出dfs方法,意味着当前顶点没有指向其他顶点的边了
//,即当前顶点是一条路径上的最后一个顶点。
//换句话说其实就是此时该顶点出度为0了
result.push(this->arc[n].data);

}

总结

对于基于DFS的算法,增加结果集的条件是:顶点的出度为0。这个条件和Kahn算法中入度为0的顶点集合似乎有着异曲同工之妙,Kahn算法不须要检测图是否为DAG,假设图为DAG,那么在入度为0的栈为空之后,图中还存在没有被移除的边,这就说明了图中存在环路。而基于DFS的算法须要首先确定图为DAG,当然也可以做出适当调整,让环路的检测測和拓扑排序同一时候进行,毕竟环路检測也可以在DFS的基础上进行。


结束

2127. 参加会议的最多员工数